提高離心通風機葉輪性能淺述
摘要 :總結和闡述了 離心通風機內葉輪的設計方法和利用 邊界層控制技術提高離心通風機葉輪性能等 兩個方面 的主要成果,指出了這些研究的特點,結合作者自己的研究工作對提高離心通風機性能提出了建議,并對該方面研究的發展進行了展望。
關鍵詞 :離心式通風機;性能;效率;方法
中圖分類號: TH432 文獻標識碼: A
文章編號: 1006-8155 ( 2008 ) 06-0057-04
Brief Review on Methods to Improve the Impeller Performance of Centrifugal Fans
Abstract: In this paper, the design method for impeller of centrifugal fan and the boundary-control approaches for improving impeller performance are briefly introduced and reviewed. In addition, the features of the above researches have been analyzed and pointed out in combination with the practical experiences. The author has given some suggestions for improving performance of centrifugal fan and the prospect for developing the research in this aspect.
Key words: centrifugal fan; performance; efficiency; method
0 引言
離心式通風機作為流體機械的一種重要類型,廣泛應用于國民經濟各個部門 , 是主要的耗能機械之一,也是節能減排的一個重要研究領域。 研究過程表明 : 提高離心通風機葉輪設計水平 , 是 提高離心通風機效率、擴大其工況范圍的關鍵。本文將從離心通風機葉輪的設計和利用 邊界層控制技術提高離心通風機葉輪性能這 兩個方面,對近年來提出的 提高離心通風機性能的方法和途徑 的研究進行歸納分析。
1 離心通風機葉輪的設計方法簡述
如何設計高效、工藝簡單的 離心通風機一直是科研人員研究的主要問題, 設計高效葉輪葉片是解決這一問題的主要途徑。
葉輪是風機的核心氣動部件,葉輪內部流動的好壞直接決定著整機的性能和效率。因此國內外學者為了了解葉輪內部的真實流動狀況,改進葉輪設計以提高葉輪的性能和效率,作了大量的工作。
為了設計出高效的離心葉輪 , 科研工作者們從各種角度來研究氣體在葉輪內的流動規律 , 尋求最佳的葉輪設計方法。最早使用的是一元設計方法 [1] ,通過大量的統計數據和一定的理論分析,獲得離心通風機各個關鍵截面氣動和結構參數的選擇規律。在一元方法使用的初期,可以簡單地通過對風機各個關鍵截面的平均速度計算,確定離心葉輪和蝸殼的關鍵參數,而且一般葉片型線采用簡單的單圓弧成型。這種方法非常粗糙,設計的風機性能需要設計人員有非常豐富的經驗,有時可以獲得性能不錯的風機,但是,大部分情況下,設計的通風機效率低下。為了改進,研究人員對葉輪輪蓋的子午面型線采用過流斷面的概念進行設計 [2-3] ,如此設計出來的離心葉輪的輪蓋為兩段或多段圓弧,這種方法設計的葉輪雖然比前一種一元設計方法效率略有提高,但是該方法設計的風機輪蓋加工難度大,成本高,很難用于大型風機和非標風機的生產。另外一個重要方面就是改進葉片設計,對于二元葉片的改進方法主要為采用等減速方法和等擴張度方法等 [4] ,還有 采用給定葉輪內相對速度 W 沿平均流線 m 分布 [5] 的方法。 等減速方法 從損失的角度考慮, 氣流相對速度在葉輪流道內的流動過程中以同一速率均勻變化,能減少流動損失, 進而 提高葉輪效率 ;等擴張度方法是為了避免局部地區過大的擴張角而提出的方法。 給定的葉輪內相對速度 W 沿平均流線 m 的分布是通過控制相對平均流速沿流線 m 的變化規律,通過簡單幾何關系,就可以得到葉片型線沿半徑的分布。以上方法雖然簡單,但也需要比較復雜的數值計算。
隨著數值計算以及電子計算機的高速發展,可以采用更加復雜的方法設計離心通風機葉片 。 苗水淼等 運用“全可控渦”概念 [6] , 建立了一種采用流線曲率法在葉輪流道的子午面上進行葉輪設計的設計方法 , 該方法目前已經推廣至工程界 , 并已經取得了顯著效果 [7] 。但是此方法中決定葉輪設計成功與否的關鍵 , 即如何給出子午流面上葉片渦的合理分布。這一方面需要具有較豐富的設計經驗;另一方面也需要在設計過程中對設計結果不斷改進以符合葉片渦的分布規律 , 以期最終設計出高效率的葉輪機械。對于整個子午面上可控渦的確定,可以采用 rCu 沿輪盤、輪蓋的給定,可以通過線性插值的方法確定 rCu 在整個子午面上的分布[8-9] ,也可以通過經驗公式確定可控渦的分布 [10] ,也有 利用給定葉片載荷法 [11] 設計離心通風機的葉片。以上方法都是采用流線曲率法,設計出的是三元離心葉片,對于二元離心通風機葉片還不能直接應用。但數值計算顯示,離心通風機的二元葉片內部流動的結構是更復雜的三維流動。因此,如何利用三維流場計算方法進一步來設計高效二元離心葉輪是提高離心通風機設計技術的關鍵。
隨著計算技術的不斷發展,三維粘性流場計算獲得了非常大的進步,據此,有一些研究者提出了近似模型方法。該方法是 針對在工程中完全采用隨機類優化方法尋優時計算量過大的問題, 應用統計學的方法, 提出的一種 計算量小、在一定程度上可以保證設計準確性的方法。在近似模型方法應用于葉輪機械氣動優化設計方面 , 國內外研究者們已經做了相當一部分工作 [12-14] , 其中以響應面和人工神經網絡方法應用居多。如何有效地將近似模型方法應用于多學科、多工況的優化問題 , 并用較少的設計參數覆蓋更大的實際設計空間 , 是一個重要的課題。
2007 年,席光等提出了近似模型方法在葉輪機械氣動優化設計中的應用 [15] 。 近似模型的建立過程主要包括 : ( 1 )選擇試驗設計方法并布置樣本點 , 在樣本點上產生設計變量和設計目標對應的樣本數據;( 2 )選擇模型函數來表示上面的樣本數據;( 3 )選擇某種方法 , 用上面的模型函數擬合樣本數據,建立近似模型。以上每一步選擇不同的方法或者模型,就相應產生了各種不同的近似模型方法。該方法不僅有利于更準確地洞察設計量和設計目標之間的關系,而且用近似模型來取代計算費時的評估目標函數的計算分析程序,可以為工程優化設計提供快速的空間探測分析工具,降低了計算成本。 在氣動優化設計過程中,用該模型取代耗時的高精度的計算流體動力學分析 , 可以加速設計過程 , 降低設計成本。基于統計學理論提出的近似模型方法,有效地平衡了基于計算流體動力學分析的葉輪機械氣動優化設計中計算成本和計算精度這一對矛盾。該近似模型方法在試驗設計方法基礎上,將響應面方法、 Kriging 方法和人工神經網絡技術成功地應用于葉輪機械部件的優化設計中,在離心壓縮機葉片擴壓器、葉輪和混流泵葉輪設計等問題中得到了成功應用 , 展示了廣闊的工程應用前景。目前,席光課題組已經建立了離心壓縮機部件及水泵葉輪的優化設計系統,并在工程設計中發揮了重要作用。
2008 年,李景銀等在近似模型方法的基礎上提出了 控制離心葉輪流道的相對平均速度優化設計方法 [16] ,將近似模型方法較早的應用于離心通風機葉輪設計。該方法通過給出 流道內氣流 平均速度 沿平均流線的設計分布,設計出一組離心風機參數,根據正交性準則,在充分考慮影響葉輪效率因素的基礎上,采用正交優化方法進行優化組合,并結合基于流體動力學分析軟件的數值模擬,最終 成功開發了與全國推廣產品 9-19 同樣設計參數和葉輪大小的離心通風機模型,計算全壓效率提高了 4% 以上 。該方法 簡單易行、合理可靠, 得到了很高的設計開發效率。
隨著理論研究的不斷深入和設計方法的不斷提高,對于 降低葉輪氣動損失、改善葉輪氣動性能的措施, 提高離心風機效率的研究,將會更好的應用于工程實際中。
2 改善離心通風機內葉輪流動的方法
葉輪是離心風機的心臟,離心風機葉輪的內部流動 是一個 非常復雜的 逆壓過程 , 葉輪的高速旋轉和葉道復雜幾何形狀都使其內部流動變成了非常復雜的三維湍流流動 。由于壓差,葉片通道內一般會存在葉片壓力面向吸力面的二次流動,同時由于氣流 90 °轉彎,導致輪盤壓力大于輪蓋壓力也形成了二次流,這一般會導致葉輪的輪蓋和葉片吸力面區域出現低速區甚至分離,形成射流—尾跡結構 [17] 。由于射流—尾跡結構的存在,導致離心風機效率下降,噪聲增大。為了改善離心葉輪內部的流動狀況,提高葉輪效率,一個重要的研究方向就是采用邊界層控制方式提高離心葉輪性能,這也是近年的熱點研究方向。
2007 年,劉小民等人采用邊界層主動控制技術在壓縮機進氣段選擇性布置渦流發生器,從而改變葉輪進口處流場 , 通過數值計算對不同配置參數下離心壓縮機性能進行對比分析 [18] 。 該文章對渦流發生器應用于離心葉輪內流動控制的效果進行了初步的驗證和研究 , 通過數值分析表明這種方法確實可以改善葉輪內部流動 , 達到提高葉輪性能的效果。但是 該主動控制技術結構復雜,而且需要外加控制設備和能量,對要求經濟耐用的離心通風機產品不具有競爭力。
采用邊界層控制方式提高離心葉輪性能的另外一種方法就是 采用自適應邊界層控制技術。 1999 年,黃東濤等人提出了離心通風機葉輪設計中采用長短葉片開縫方法 [19-20] ,該方法 采用的串列葉柵技術, 綜合了長短葉片和邊界層吹氣兩種技術的優點 ,利用邊界層吹氣技術抑制邊界層的增長,提高效率,而且試驗結果表明 [20] ,該方法可以有效的提高設計和大流量下的風機效率,但對小流量效果不明顯。文獻 [21] 用此思想解決了離心葉輪內部積灰的問題。雖然串列葉柵技術在離心壓縮機葉輪 [20] 內沒有獲得效率提高的效果,但從文獻內容看,估計是由于該文作者主要研究的是串聯葉片的相位效應,而沒有研究串聯葉片的徑向位置的變化影響導致的。
理論和試驗都表明,離心葉輪的射流尾跡結構隨著流量減小更加強烈,而且小流量時,尾跡處于吸力面,設計流量時,尾跡處于吸力面和輪蓋交界處。為了提高設計和小流量離心通風機效率, 2008 年,田華等人提出了葉片開縫技術 [22] ,該技術提出在 葉輪輪蓋與葉片之間 葉片尾部處開縫, 引用葉片壓力面側的高壓氣體吹除吸力面側的低速尾跡區, 直接給葉輪內的低速流體提供能量。最終得到 在設計流量和小流量情況下,葉輪開縫后葉片表面分離區域減小,整個流道速度和葉輪內部相對速度分布更加均勻,且最大絕對速度明顯減小的結果。這種方法改善了葉輪內部流場的流動狀況,達到了提高離心葉輪性能和整機性能的效果,而且所形成的射流可以吹除葉片吸力面的積灰,有利于葉輪在氣固兩相流中工作。
2008 年,李景銀等人提出在 離心風機輪蓋上靠近葉片吸力面處開孔的方法 [23] ,利用蝸殼內的高壓氣體產生射流,從而直接給葉輪內的低速或分離流體提供能量,以減弱由葉輪內二次流所導致的射流 - 尾跡結構,并可用于消除或解決部分負荷時 , 常發生的離心葉輪的積灰問題。通過對離心風機整機的數值試驗,發現 輪蓋開孔后,在設計點附近的風機壓力提高了約 2 %,效率提高了 1 %以上,小流量時壓力提高了 1.5 %,效率提高了 2.1 %。在設計流量和小流量時,由于輪蓋開孔形成的射流,可以明顯改善葉輪出口的分離流動,減小低速區域,降低葉輪出口處的最高速度和速度梯度,從而減弱了離心葉輪出口處的射流—尾跡結構。此外,沿葉片表面流動分離區域減小,壓力增加更有規律。輪蓋開孔方法可以提高設計流量和小流量下的閉式離心葉輪性能和整機性能,如果結合離心葉輪串列葉柵自適應邊界層控制技術,有可能全面提高離心葉輪性能。
3 結論
綜上所述 , 近年來 對離心 通 風機葉輪內部流動的研究取得了明顯進展 , 有些研究成果已經應用到實際設計中,并獲得令人滿意的結果。目前 , 對離心通風機葉輪內部流動的研究仍是比較活躍的研究領域之一 ,筆者認為可在如下方面進行進一步研究:
( 1 )如何將近似模型方法在通風機方面的應用進行更深入的研究,結合已有的葉片設計技術,探索更加高效快速的優化設計方法;
( 2 )如何將 串列葉柵 、輪蓋開孔和葉片開縫等離心葉輪自適應邊界層控制技術結合起來,在全工況范圍內改善離心 通 風機葉輪的性能,提高離心風機的效率;
( 3 )考慮非定常特性的設計方法研究。目前,研究離心 通 風機葉輪內部的流動均仍以定常計算為主,隨著動態試驗和數值模擬的發展 , 人們對于葉輪機械內部流動的非定常現象及其機理將越來越清楚 , 將非定常的研究成果應用于設計工作中是非常重要的方面。
參 考 文 獻
[1] 李慶宜 . 通風機 [M]. 西安交通大學出版社, 2005.
[2] 姚承范 , 王明德 , 馬林 , 等 . 離心風機葉輪子午型線的數值設計 [J]. 西安交通大學學報, 1986 , 20(6):67-74.
[3] 續魁昌 . 風機手冊 [M]. 北京:機械工業出版社, 1999.
[4] 朱之墀 , 沈天耀 .9-19 風機氣動設計問題 [J]. 透平壓縮機械 ,1980(3):20-30.
[5] 祁大同 , 李占良 . 離心風機葉片型線的一種二維逆命題簡便設計方法 [J]. 應用力學報 ,1994,11(3):98-102.
[6] 苗水淼 , 王尚錦 . 徑、混流式三元葉輪“全可控渦”設計理論和方法 [J]. 工程熱物理學報 ,1981 ( 2 ) : 157-159.
[7] 李超,章瑞成 . “可控渦 ” 法設計離心葉輪的應用研究 [J]. 動力工程 ,2003,23(6):2845-2849.
[8] Yan YL Tan C S Aerodynamic Design of Turbomachinery Blading in Three Dimension Flow :An application to Radial Inflow Turbines [J].Journal of Turbomachinery ,1993: 115.
[9] Zangeneh M Goto A Takemura T.Suppression of Secondary Flow in a Mixed Flow Pump Impeller by Application of 3D Inverse Design Method [J]. Part 1. Design and Numerical Validation T ASME Journal of turbomachinery 1996:118.
[10] Ghaly W S A Design Method for Turbomachinery Blading in Three Dimensional Flow [J]. International Journal for Numerical Method in Fluids,1990:10.
[11] 陳汝剛 , 張春梅 , 朱營康 . 給定載荷法風機三元設計 [J]. 風機技術, 2001 ( 5 ) :10-12.
[12] Shyy W, Tucker P K, Vaidyanathan R. Response surface and neural network techniques for rocket engine injector optimization [J ]. Journal of Propulsion and Power ,2001,17(2):391 - 401.
[13] Madsen J I, Shyy W, Haftka R T. Response surface techniques for diffuser shape optimization [J]. AIAA Journal,2000 ,38 (9):1512-1518.
[14] Papila N , Shyy W, Griffin L. Shape optimization of supersonic turbines using global approximation methods [J ]. Journal of Propulsion and Power,2001,18(3): 509-518.
[15] 席光 , 王志恒 , 王尚錦 . 葉輪機械氣動優化設計中的近似模型方法及其應用 [J]. 西安交通大學學報, 2007,41(2):125-135.
[16] 李景銀 , 牛子寧 , 梁亞勛 . 控制流道平均速度的離心葉輪優化設計方法 [C]. 工程熱物理學會流體機械會議論文集, 2008.
[17] 李景銀 , 梁亞勛 , 田華 . 不同型線離心風機葉輪的性能對比研究 [J]. 工程熱物理學報, 2008 , 29(6):963-966.
[18] 劉小民 , 張煒 , 席光 . 帶有渦流發生器的離心壓氣機內流動分析 [J]. 工程熱物理學報, 2007 , 28 (6) : 951-953.
[19] 唐旭東 , 黃東濤 , 朱之墀,等 . 邊界層控制技術在離心葉輪中的應用 [J]. 流體機械, 1998 , 26 ( 9 ): 15-18.
[20] 黃東濤,邊曉東,唐旭東 , 等 . 長短葉片開縫技術在離心風機設計中的應用 [J]. 清華大學學報(自然科學版), 1999 , 39 ( 4 ): 6-9.
[21] 許云龍 . 粘性粉塵排送風機 [J]. 風機技術, 1996(2) : 26-27.
[22] 田華 , 李景銀 , 梁亞勛 . 葉片開縫的離心風機流場研究 [C]. 工程熱物理學會流體機械會議論文集, 2008.
[23] 李景銀 , 田華 , 梁亞勛 . 輪蓋開孔的離心風機流場研究 [J]. 西安交通大學學報, 2008,42(9 ):13-17.
轉載自:風機技術網 http://www.cftn.cn/